Abstract
AbstractIt is proved that if a planar triangulation different from K3 and K4 contains a Hamiltonian cycle, then it contains at least four of them. Together with the result of Hakimi, Schmeichel, and Thomassen [2], this yields that, for n ⩾ 12, the minimum number of Hamiltonian cycles in a Hamiltonian planar triangulation on n vertices is four. We also show that this theorem holds for triangulations of arbitrary surfaces and for 3‐connected triangulated graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.