Abstract

AbstractAtomic force microscopy (AFM) serves characterization and actuation in nanoscale applications. We study the stochastic dynamics of an AFM cantilever under tip-sample interactions represented by the Lennard–Jones and Morse potential energy functions. In both cases, we also study the contrasting dynamic effects of additive (external) and multiplicative (internal) noise. Moreover, for multiplicative noise, we study the two sub-cases arising from the Itô and Stratonovich interpretations of stochastic integrals. In each case, we also investigate the stochastic stability of the system by tracing the time evolution of the maximal Lyapunov exponent. Additionally, we obtain stationary probability densities for the unforced dynamics using stochastic averaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.