Abstract

Phase transitions in gadolinium potassium niobate GdK2Nb5O15 (GKN) ceramics have been investigated by x-ray diffraction, dielectric susceptibility, differential scanning calorimetry, and Raman scattering. The results of our complementary studies show that GKN exhibits two phase transitions at Tc1 = 238 °C and Tc2 = 375 °C attributed to the ferroelectric-antiferroelectric-paraelectric (FE-AFE-PE) phase transitions. According to the x-ray diffraction analysis, the FE and PE phases were refined in the polar P4bm and centrosymmetric P4/mbm space groups. For the intermediate phase, the structure is refined in the space group P4nc with doubling of the c unit cell parameter, which is compatible with an AFE phase. This result was confirmed by Raman spectroscopy since new low-frequency lines are activated in the AFE phase due to the Brillouin zone-folding effect, typical for the modulated phases. The presence of the AFE phase between the FE and PE phases and the complex nature of tetragonal tungsten bronze crystal structure can explain the large thermal hysteresis observed at the FE-AFE transition between heating and cooling cycle and the strong depression of the Curie-Weiss temperature T0. The semi-phenomenological Ising-like model based on the obtained experimental data is proposed to account for the observed FE-AFE-PE transition sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.