Abstract

The interactions between plasma and liquid solutions give rise to the formation of chemically reactive species useful for many applications, but the mass transport in the interfacial region is usually limited and not fully understood. In this work, we report on the observation and explanation of droplet ejection at the plasma–liquid interface of a one-atmosphere glow discharge with the liquid anode. The impact of droplets emission on plasma properties is also analyzed by spectroscopy. The process, which is an efficient mass and charge transport mechanism, apparently occurs during discharge operation and thus constitutes a feedback vehicle between the discharge and the liquid. Distinctive from the well-known Talyor cone droplets associated with liquid cathodes, the observed droplets originate from the bubbles due to electrolysis and solvated air which does not require strong electric field at liquid surface. Instead, the droplets are ejected by bubble cavity rupture at the plasma–liquid interface and their size, initial speed are strongly dependent on the gravity, inertia and capillarity. The droplets emerge near the plasma attachment and are subsequently vaporized, emitting intense UV and visible light, which originated from excited OH radicals and sodium derived from the liquid electrolyte. Spectroscopy analysis confirmed that the bursting droplets generally reduce the gas temperature while their effects on electron density depend on the composition of the liquid anode. Results also show that droplets from NaCl solution increase the plasma electron density due to the lower ionization potential of sodium. These findings reveal a new mechanism for discharge maintenance and mass transport as well as suggest a simple approach to dispersing plasma-activated liquid into the gas phase and thus enhancing plasma–liquid interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.