Abstract

In the present paper, the motion of three rigid bodies is considered. With a set of new variables, and the 10 first integrals of the motion, the problem is reduced to a system of order 25 and one quadrature. The plane motions are characterized, and finally, an equation for the existence of central configurations (in particular, Lagrangian and Eulerian solutions) has been found. Besides, the case of three axisymmetric ellipsoids is studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.