Abstract
In this paper, we use a new method to obtain the necessary and sufficient condition guaranteeing the validity of the Minkowski-H\"{o}lder type inequality for the generalized upper Sugeno integral in the case of functions belonging to a wider class than the comonotone functions. As a by-product, we show that the Minkowski type inequality for seminormed fuzzy integral presented by Daraby and Ghadimi in General Minkowski type and related inequalities for seminormed fuzzy integrals, Sahand Communications in Mathematical Analysis 1 (2014) 9--20 is not true. Next, we study the Minkowski-H\"{o}lder inequality for the lower Sugeno integral and the class of $\mu$-subadditive functions introduced in On Chebyshev type inequalities for generalized Sugeno integrals, Fuzzy Sets and Systems 244 (2014) 51--62. The results are applied to derive new metrics on the space of measurable functions in the setting of nonadditive measure theory. We also give a partial answer to the open problem 2.22 posed by Borzov\'a-Moln\'arov\'a and et al in The smallest semicopula-based universal integrals I: Properties and characterizations, Fuzzy Sets and Systems 271 (2015) 1--17.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.