Abstract

Recently, a dislocation model that quantitatively relates the minimum grain size obtainable by ball milling, dmin, to several physical parameters, such as the activation energy for self-diffusion and the stacking fault energy, in a nanocrystalline (nc) material was developed. In this paper, it is shown that the predictions of the model are consistent with the characteristics of the minimum grain size, dmin, obtainable in FCC and BCC metals by high-pressure torsion. Such a consistency indicates that the dislocation model for ball milling is quantitatively applicable to the description of other severe plastic deformation (SPD) processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.