Abstract

Mitochondria are organelles of endosymbiontic origin that contain more than one thousand different proteins. The vast majority of these proteins is synthesized in the cytosol and imported into one of four mitochondrial subcompartments: outer membrane, intermembrane space, inner membrane and matrix. Several import pathways exist and are committed to different classes of precursor proteins. The presequence translocase of the inner mitochondrial membrane (TIM23 complex) mediates import of precursor proteins with cleavable amino-terminal presequences. Presequences direct precursors across the inner membrane. The combination of this presequence with adjacent regions determines if a precursor is fully translocated into the matrix or laterally sorted into the inner mitochondrial membrane. The membrane-embedded TIM23 SORT complex mediates the membrane potential-dependent membrane insertion of precursor proteins with a stop-transfer sequence downstream of the mitochondrial targeting signal. In contrast, translocation of precursor proteins into the matrix requires the recruitment of the presequence translocase-associated motor (PAM) to the TIM23 complex. This ATP-driven import motor consists of mitochondrial Hsp70 and several membrane-associated co-chaperones. These two structurally and functionally distinct forms of the TIM23 complex (TIM23 SORT and TIM23 MOTOR) are in a dynamic equilibrium with each other. In this review, we discuss recent advances in our understanding of the mechanisms of matrix translocation and membrane insertion by the TIM23 machinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.