Abstract

It is well known that any natural exponential family (NEF) is characterized by its variance function on its mean domain, often much simpler than the corresponding generating probability measures. The mean value parametrization appeared to be crucial in some statistical theory, like in generalized linear models, exponential dispersion models and Bayesian framework. The main aim of the paper is to expose the mean value parametrization for possible statistical applications. The paper presents an overview of the mean value parametrization and of the characterization property of the variance function for NEF’s. In particular it introduces the relationships existing between the NEF’s generating measure, Laplace transform and variance function as well as some supplemental results concerning the mean value representation. Some classes of polynomial variance functions are revisited for illustration. The corresponding NEF’s of such classes are generated by counting probabilities on the nonnegative integers and provide Poisson-overdispersed competitors to the homogeneous Poisson distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.