Abstract

Given a multi-dimensional Markov diffusion X, the Malliavin integration by parts formula provides a family of representations of the conditional expectation E[g(X 2)|X1]. The different representations are determined by some localizing functions. We discuss the problem of variance reduction within this family. We characterize an exponential function as the unique integrated mean-square-error minimizer among the class of separable localizing functions. For general localizing functions, we prove existence and uniqueness of the optimal localizing function in a suitable Sobolev space. We also provide a PDE characterization of the optimal solution which allows to draw the following observation : the separable exponential function does not minimize the integrated mean square error, except for the trivial one-dimensional case. We provide an application to a portfolio allocation problem, by use of the dynamic programming principle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.