Abstract

Fragmentation testing is frequently used to probe film fracture strain and the interfacial properties of thin brittle films on compliant substrates. A model based upon complete yield of the film/substrate interface is frequently used to analyse data after cracking has saturated. Additionally, the film is either assumed to have a single-valued failure stress or a distribution of strengths described by Weibull statistics. Recent work by the authors showed that consideration of film thickness variations and the application of neighbour ratio analysis brought 96% of the data for an Al x O y /Cu film/substrate system into compliance with the predictions for a film with a single-valued failure stress. In the present work Cr/PI (polyimide) and Cr/PET (polyethylene teraphthalate) systems are analysed according to the same methodology. The Cr films on polymer substrates crack such that the neighbour ratios considerably exceed the predicted limit of 2. The influence of the relative thickness of the film and substrate and the strain rate of the test is investigated. A deviation from the idealised mechanical model due to the large difference in elastic moduli of film and substrate is put forward as a possible cause of the observed behaviour. The importance of these results to the application of the interfacial yield model is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.