Abstract
1,3-Bis(diphenylene)-2-phenylallyl (BDPA)-based radicals are of interest as polarizing agents for dynamic nuclear polarization (DNP). For this purpose, a BDPA-nitroxide biradical, employing a phosphodiester linkage, was synthesized. Contrary to what is commonly assumed, BDPA-derived radicals were observed to have limited stability. Hence, the effects of various factors on the stability of BDPA radicals were investigated. Solvent polarity was found to play a significant role on degradation; a polar BDPA radical was observed to degrade faster in a non-polar solvent, whereas non-polar radicals were more unstable in polar solvents. The rate of decomposition was found to increase non-linearly with increasing radical concentration; a 2-fold increase in concentration led to a 3-fold increase in the rate of degradation. Collectively, these results indicate that the dimerization is a significant degradation pathway for BDPA radicals and indeed, a dimer of one BDPA radical was detected by mass spectrometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.