Abstract

Let D be a digraph with n vertices and a arcs. The Laplacian and the signless Laplacian matrices of D are, respectively, defined as L(D)=Deg+(D)−A(D) and Q(D)=Deg+(D)+A(D), where A(D) represents the adjacency matrix and Deg+(D) represents the diagonal matrix whose diagonal elements are the out-degrees of the vertices in D. We derive a combinatorial representation regarding the first few coefficients of the (signless) Laplacian characteristic polynomial of D. We provide concrete directed motifs to highlight some applications and implications of our results. The paper is concluded with digraph examples demonstrating detailed calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.