Abstract

The framework to describe the out-of-equilibrium free electrons in cold plasmas is developed assuming the electron entropy is defined through the Boltzmann H-theorem. Our theory explains why the Saha-Boltzmann relation among higher-lying excited states by means of the electron kinetic temperature is fulfilled, even when free electrons are far from equilibrium. The thermodynamic electron temperature, pressure and chemical potential have been introduced through the derivatives of the electron entropy. It is demonstrated that under usual conditions in cold plasmas, e.g. when the electron distribution function possesses the Maxwellian, Druyvestein or Kappa functional forms, kinetic and thermodynamic electron temperatures yield the same value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.