Abstract

AbstractA laboratory experiment was performed to study the dynamically rich interaction of a turbulent open channel flow with a bed-mounted axial-flow hydrokinetic turbine. An acoustic Doppler velocimeter and a torque transducer were used to simultaneously measure at high temporal resolution the three velocity components of the flow at various locations upstream of the turbine and in the wake region and turbine power, respectively. Results show that for sufficiently low frequencies the instantaneous power generated by the turbine is modulated by the turbulent structure of the approach flow. The critical frequency above which the response of the turbine is decoupled from the turbulent flow structure is shown to vary linearly with the angular frequency of the rotor. The measurements elucidate the structure of the turbulent turbine wake, which is shown to persist for at least fifteen rotor diameters downstream of the rotor, and a new approach is proposed to quantify the wake recovery, based on the growth of the largest scale motions in the flow. Spectral analysis is employed to demonstrate the dominant effect of the tip vortices in the energy distribution in the near-wake region and uncover meandering motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.