Abstract

The purpose of this paper is to develop analytical methods for studyingparticle paths in a class of three-dimensional incompressible fluid flows. In this paper we study three-dimensionalvolume preserving vector fields that are invariant under the action of a one-parameter symmetry group whose infinitesimal generator is autonomous and volume-preserving. We show that there exists a coordinate system in which the vector field assumes a simple form. In particular, the evolution of two of the coordinates is governed by a time-dependent, one-degree-of-freedom Hamiltonian system with the evolution of the remaining coordinate being governed by a first-order differential equation that depends only on the other two coordinates and time. The new coordinates depend only on the symmetry group of the vector field. Therefore they arefield-independent. The coordinate transformation is constructive. If the vector field is time-independent, then it possesses an integral of motion. Moreover, we show that the system can be further reduced toaction-angle-angle coordinates. These are analogous to the familiar action-angle variables from Hamiltonian mechanics and are quite useful for perturbative studies of the class of systems we consider. In fact, we show how our coordinate transformation puts us in a position to apply recent extensions of the Kolmogorov-Arnold-Moser (KAM) theorem for three-dimensional, volume-preserving maps as well as three-dimensional versions of Melnikov's method. We discuss the integrability of the class of flows considered, and draw an analogy with Clebsch variables in fluid mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.