Abstract

The paper discusses the application of a newly developed material model for finite anisotropic plasticity to the simulation of earing formation in cylindrical cup drawing. The model incorporates Hill-type plastic anisotropy, nonlinear kinematic and nonlinear isotropic hardening. The constitutive framework is derived in the context of continuum thermodynamics and represents a multiplicative formulation of anisotropic elastoplasticity in the finite strain regime. Plastic anisotropy is described by means of second-order structure tensors which are used as additional tensor-valued arguments in the representation of the yield criterion and the plastic flow rule. The evolution equations are integrated by a form of the exponential map that fullfils plastic incompressibility and preserves the symmetry of the internal variables. The numerical examples investigate the influence of the hardening behaviour on an initially anisotropic yield criterion. In particular, the influence of using the kinematic hardening component of the model in addition to isotropic hardening in the earing simulations is examined. Comparisons with test data for aluminium and steel sheets display a good agreement between the finite element results and the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.