Abstract

In recent years, numerical solutions of the equations of compressible magnetohydrodynamic (MHD) flows have been found to contain intermediate shocks for certain kinds of problems. Since these results would seem to be in conflict with the classical theory of MHD shocks, they have stimulated attempts to reexamine various aspects of this theory, in particular the role of dissipation. In this paper, we study the general relationship between the evolutionary conditions for discontinuous solutions of the dissipation-free system and the existence and uniqueness of steady dissipative shock structures for systems of quasilinear conservation laws with a concave entropy function. Our results confirm the classical theory. We also show that the appearance of intermediate shocks in numerical simulations can be understood in terms of the properties of the equations of planar MHD, for which some of these shocks turn out to be evolutionary. Finally, we discuss ways in which numerical schemes can be modified in order to avoid the appearance of intermediate shocks in simulations with such symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.