Abstract

Implementations of abstract data types are defined via enrichments of a target type. We propose to use an extended typed λ-calculus for enrichments in order to meet the conceptual requirement that an implementation has to bring us closer to a (functional) program. Composability of implementations is investigated, the main result being that composition of correct implementations is correct if terminating programs are implemented by terminating programs. Moreover, we provide syntactical criteria to guarantee correctness of composition. The proof is based on strong normalization and Church-Rosser results of the extended λ-calculus which seem to be of interest in their own right.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.