Abstract

It is anticipated that energy storage will be incorporated into the distribution network component of the future smart grid to allow desirable features such as distributed generation integration and reduction in the peak demand. There is, therefore, an urgent need to understand the impact of storage on distribution system planning. In this paper, we focus on the effect of storage on the loading of neighbourhood pole-top transformers. We apply a probabilistic sizing technique originally developed for sizing buffers and communication links in telecommunications networks to jointly size storage and transformers in the distribution network. This allows us to compute the potential gains from transformer upgrade de- ferral due to the addition of storage. We validate our results through numerical simulation using measurements of home load in a testbed of 20 homes and demonstrate that our guidelines allow local distribution companies to defer trans- former upgrades without reducing reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.