Abstract

Grinding and flotation processes are often studied independently, despite the well-established grinding influence on flotation performance, which affects not only particle size and thus liberation but also shape and leads to complex changes in pulp chemistry affecting the particle surface properties relevant for selective bubble attachment. Yet, no study jointly investigated these possible causes and many are limited to single mineral flotation. We relate grinding conditions to changes in pulp chemistry and particle surface properties and assess their impact on upgrading. We studied three non-sulfide ores with different feed grades and valuables: scheelite, apatite, and fluorite. These were dry-, wet-, and wet conditioned-ground before flotation in a laboratory mechanical cell. Results were evaluated with bulk- and particle-specific methodologies. The selectivity of the process is higher after dry grinding for the fluorite and apatite ores and irrelevant for the scheelite ore. Variations in flotation kinetics of individual particles associated to their size and shape are not sufficient to explain these results. The higher concentration of Ca2+ and Mg2+ observed in the pulp after wet grinding, altering particle surface properties, better explains the phenomenon. Additionally, we demonstrate how particle shape impacts are system specific and related to both entrainment and true flotation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.