Abstract

Parts of an aircraft structure may be made to vibrate as a result of acoustic waves generated by various aircraft noise sources impinging on the structure. The stresses associated with this acoustically induced vibration may be sufficiently large to result in fatigue failure of portions of the structure. If acoustically induced fatigue cracks occur in the stiffened skin structures widely used in aircraft construction they may initiate in the skin panels near the stiffener attachment points. The initiation and subsequent propagation of these cracks at the panel edges is primarily due to the bending stresses arising from the out-of-plane vibration of the individual skin panels. The emphasis of the work described in this paper is on examining the growth rate of edge cracks in acoustically excited panels. A single panel with an edge crack is considered and this structural element is modelled as a flat plate clamped on three edges and part of the fourth. The crack is represented by the unclamped part of the fourth edge. Fracture mechanics principles are used to predict the crack growth rates associated with the first two modes of vibration of the edge cracked panel. The crack tip stress intensity factors associated with these panel modes are estimated by a technique based on finding the nominal bending stresses at the crack tips. The nominal bending stresses are in turn found from mode shapes determined by the Rayleigh Principle. The validity of the various assumptions is assessed by comparing the predicted crack growth rates with measured growth rates in panels representative of those used in aircraft construction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.