Abstract

The characterization of the protein corona has become an essential part of understanding the biological properties of nanomaterials. This is also important in the case of mesoporous silica particles intended for use as drug delivery excipients. A combination of scattering, imaging and protein characterization techniques is used here to assess the effect of particle shape and growth of the reversible (soft) and strongly bound (hard) corona of three types mesoporous silica particles with different aspect ratios. Notable differences in the protein composition, surface coverage and particle agglomeration of the protein corona-particle complex point to specific protein adsorption profiles highly dependent on exposed facets and aspect ratio. Spherical particles form relatively homogeneous soft and hard protein coronas (approx.10 nm thick) with higher albumin content. In contrast to rod-shaped and faceted particles, which possess soft coronas weakly bound to the external surface and influenced to a greater extent by the particle morphology. These differences are likely important contributors to observed changes in biological properties, such as cell viability and immunological behaviour, with mesoporous silica particle shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.