Abstract

In an earlier paper, we proved the validity of large deviations theory for the particle approximation of quite general chemical reaction networks (CRNs). In this paper, we extend its scope and present a more geometric insight into the mechanism of that proof, exploiting the notion of spherical image of the reaction polytope. This allows to view the asymptotic behavior of the vector field describing the mass-action dynamics of chemical reactions as the result of an interaction between the faces of this polytope in different dimensions. We also illustrate some local aspects of the problem in a discussion of Wentzell-Freidlin (WF) theory, together with some examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.