Abstract

A continuum mechanical framework for the description of the geometry and kinematics of defects in material structure is proposed. The setting applies to a body manifold of any dimension which is devoid of a Riemannian or a parallelism structure. In addition, both continuous distributions of defects as well as singular distributions are encompassed by the theory. In the general case, the material structure is specified by a de Rham current $$T$$ and the associated defects are given by its boundary $$\partial T$$ . For a motion of defects associated with a family of diffeomorphisms of a material body, it is shown that the rate of change of the distribution of defects is given by the dual of the Lie derivative operator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.