Abstract

Recently, rod theory has been applied to the mathematical modeling of bacterial fibers and biopolymers (e.g., DNA) to study their mechanical properties and shapes (e.g., supercoiling). In static rod theory, an elastic rod in equilibrium is the critical point of an elastic energy. This induces a natural question of how to find elasticae. In this paper, we focus on how to find the critical points by means of gradient flows. We relate a geometric function of curves to the isotropic Kirchhoff elastic energy of rods so that the generalized elastic curves are the centerlines of elastic rods in equilibrium. Thus, the variational problem for rods is formulated in curve geometry. This problem turns out to be a generalization of curve-straightening flows, which induce nonlinear fourth-order evolution equations. We establish the long time existence of length-preserving gradient flow for the geometric energy. Furthermore, by studying the asymptotic behavior, we show that the limit curves are the centerlines of the Kirchhoff elastic rods in equilibrium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.