Abstract
We construct two combinatorially equivalent line arrangements in the complex projective plane such that the fundamental groups of their complements are not isomorphic. The proof uses a new invariant of the fundamental group of the complement to a line arrangement of a given combinatorial type with respect to isomorphisms inducing the canonical isomorphism of the first homology groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.