Abstract

In a framework describing manifestly covariant relativistic evolution using a scalar time τ, consistency demands that τ-dependent fields be used. In recent work by the authors, general features of a classical parametrized theory of gravitation, paralleling general relativity where possible, were outlined. The existence of a preferred “time” coordinate τ changes the theory significantly. In particular, the Hamiltonian constraint for τ is removed From the Euler-Lagrange equations. Instead of the 5-dimensional stress-energy tensor, a tensor comprised of 4-momentum density mid flux density only serves as the source. Building on that foundation, in this paper we develop a linear approximate theory of parametrized gravitation in the spirit of the flat spacetime approach to general relativity. Using a modified form of Kraichnan's flat spacetime derivation of general relativity, we extend the linear theory to a family of nonlinear theories in which the flat metric and the gravitational field coalesce into a single effective curved metric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.