Abstract

This paper presents results for the strains and stresses in oxide scales under the conditions of temperature and pressure expected in typical steam boiler operation. These conditions are radically different from those typically encountered in laboratory testing and include features such as a thermal gradient across the tube wall, significant internal (steam) pressure, and cycling of both steam temperature and pressure. Critical examination of the assumptions of flat-plate geometry, which is usually made in calculating stresses and strains in oxide scales, indicated that only the component of the hoop strain that generates stress must be reported for the cylindrical case, and that the use of simple plane-strain is adequate for the system studied. Calculations were made for alloy T22 with a hypothetical, single-layered oxide with appropriate properties. Typical conditions associated with transition of the boiler from full to partial load involve a decrease in both steam temperature and pressure, and these two sources of stress generation were found to exert opposite effects. The relative magnitudes of the resulting strains were used to explain the trends in strain levels calculated when the effects of thermal expansion, temperature loading, and pressure loading were superimposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.