Abstract

Erdös–Lax inequality relates the sup norm of the derivative of a polynomial along the unit circle to that of the polynomial itself (on the unit circle). This paper aims to extend the classical Erdös–Lax inequality to the polar derivative of a polynomial by using the extreme coefficients of the given polynomial. The obtained results not only enrich the realm of Erdös–Lax-type inequalities but also offer a promising avenue for diverse applications where these inequalities play a pivotal role. To illustrate the practical significance of our results, we present a numerical example. It vividly demonstrates that our bounds are considerably sharper than the existing ones in the extensive literature on this captivating subject.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.