Abstract
In this note we obtain the energy of unitary Cayley graph $X_{n}$ which extends a result of R. Balakrishnan for power of a prime and also determine when they are hyperenergetic. We also prove that ${E(X_{n})\over 2(n-1)}\geq{2^{k}\over 4k}$, where $k$ is the number of distinct prime divisors of $n$. Thus the ratio ${E(X_{n})\over 2(n-1)}$, measuring the degree of hyperenergeticity of $X_{n}$, grows exponentially with $k$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.