Abstract

The AlCoCrCuFeNi high-entropy alloy system was synthesized using a well-developed arc melting and casting method. Their elemental effect on microstructures and hardness was investigated with X-ray diffraction, scanning electron microscopy and Vickers hardness testing. The alloys exhibit quite simple FCC and BCC solid solution phases. Co, Cu and Ni elements enhance the formation of the FCC phase while Al and Cr enhance that of the BCC phase in the alloy system. BCC phases form a spinodal structure during cooling. Copper tends to segregate at the interdendrite region and forms a Cu-rich FCC phase. Low copper content renders the interdendrite as a thin film and the as-cast structure like recrystallized grain structure. The formation of BCC phases significantly increases the hardness level of the alloy system. The strengthening mechanism is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.