Abstract

An equation is derived for the effective work function of a polycrystalline metal with a fiber texture. This equation contains two parameters: the temperature and the maximal tilt angle, i.e. the maximal deviation from the fiber axis. A linear relationship is assumed between the work function of a uniform lattice plane and the angle of a low index plane with respect to the uniform lattice plane. The proportionality constant D in the [100] zone is evaluated from experimental data for tungsten: D = 0.035 eV degree . It is expected that D has the same value in other bcc metals. For a given maximal tilt angle, a higher temperature results in a higher effective work function. A reasonable agreement is found for the calculated effective work functions of tungsten with 〈110〉 fiber textures of various sharpness and the experimentally determined work functions from the literature. Furthermore, the effective work function of texture-free polycrystalline tungsten is calculated. The agreement with the experimentally determined value reported in the literature is excellent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.