Abstract

In this work, almost dense (over 99.8 %) Ti-Mo alloy samples were manufactured by directed energy deposition (DED) from a mixture of pure Ti and pure Mo (7.5 wt.%) powders. As a consequence of thermal accumulation and in-situ heat treating during the DED process, as-deposited samples present a graded microstructure along the building direction along with a phase transition from hcp-α Ti to bbc-β Ti. Mechanical properties were determined by tensile tests from flat samples harvested at different altitude positions. As altitude increases from the base plate, yield strength decreases from 681 MPa to 579 MPa and ultimate tensile strength from 791 MPa to 686 MPa. Elongation of the as-deposited material increases from 10 % to 25 % while the Young’s modulus keeps a low value of 105 GPa for the entire DEDed sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.