Abstract

In this theoretical study we have investigated the effect of low-energy electrons attached onto a 3'-guanine monophosphate, 3'-GMP, in the gas phase and in aqueous solution. DFT calculations with B3LYP/DZP++ were performed to study the C3'-O3' bond break of a 3'-GMP radical anion. Our results show that low-energy electrons, if attached to a 3'-GMP with a neutrally charged phosphate group, can easily induce a C3'-3' bond break in both the gas phase and aqueous solution. The activation energy was found here to be 10.3 kcal/mol in the gas phase and, even lower, 5.3 kcal/mol in aqueous solution. In comparison with calculated activation energies for other nucleotides the 3'-GMP has the lowest energy barrier in aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.