Abstract
The use of sparse sampling is a consolidated technique for the reduced order modeling of parametric PDEs. In this note we investigate the choice of sampling points within the framework of reduced order techniques for the approximation of eigenvalue problems originating from parametric PDEs. We use the standard proper orthogonal decomposition technique to obtain the basis of the reduced space and Galerkin orthogonal technique to get the reduced problem. We present some numerical results and observe that, as in the case of the source problem, also for eigenvalue problems the use of sparse sampling is a good idea and that, when the number of sampling points is assigned, sparse sampling provides better results than uniform sampling.In the spirit of the journal, we present our results in the form of examples and counterexamples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.