Abstract

Periods of low load have been used for the scheduling of non-interactive tasks since the early stages of computing. Nowadays, the scheduling of bulk transfers—i.e., large-volume transfers without precise timing, such as database distribution, resources replication or backups—stands out among such tasks, given its direct effect on both the performance and billing of networks. Through visual inspection of traffic-demand curves of diverse points of presence (PoP), either a network, link, Internet service provider or Internet exchange point, it becomes apparent that low-use periods of bandwidth demands occur at early morning, showing a noticeable convex shape. Such observation led us to study and model the time when such demands reach their minimum, on what we have named valley time of a PoP, as an approximation to the ideal moment to carry out bulk transfers. After studying and modeling single-PoP scenarios both temporally and spatially seeking homogeneity in the phenomenon, as well as its extension to multi-PoP scenarios or paths—a meta-PoP constructed as the aggregation of several single PoPs—, we propose a final predictor system for the valley time. This tool works as an oracle for scheduling bulk transfers, with different versions according to time scales and the desired trade-off between precision and complexity. The evaluation of the system, named VTP, has proven its usefulness with errors below an hour on estimating the occurrence of valley times, as well as errors around 10% in terms of bandwidth between the prediction and actual valley traffic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.