Abstract
A simplified hyperchaotic canonical Chua's oscillator (referred as SHCCO hereafter) made of only seven terms and one nonlinear function of type hyperbolic sine is analyzed. The system is found to be self-excited, and bifurcation tools associated with the spectrum of Lyapunov exponents reveal the rich dynamical behaviors of the system including hyperchaos, torus, period-doubling route to chaos, and hysteresis when turning the system control parameters. Wide ranges of hyperchaotic dynamics are highlighted in various two-parameter spaces based on two-parameter Lyapunov diagrams. The analysis of the hysteretic window using a basin of attraction as argument reveals that the SHCCO exhibits three coexisting attractors. Laboratory measurements further confirm the performed numerical investigations and henceforth validate the mathematical model. Of most/particular interest, multistability observed in the SHCCO is further controlled based on a linear augmentation scheme. Numerical results show the effectiveness of the control strategy through annihilation of the asymmetric pair of coexisting attractors. For higher values of the coupling strength, only a unique symmetric periodic attractor survives.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.