Abstract

It is well-known from the work of Kupper and Schachermayer that most law-invariant risk measures are not time-consistent, and thus do not admit dynamic representations as backward stochastic differential equations. In this work we show that in a Brownian filtration the “Optimized Certainty Equivalent” risk measures of Ben-Tal and Teboulle can be computed through PDE techniques, i.e. dynamically. This can be seen as a substitute of sorts whenever they lack time consistency, and covers the cases of conditional value-at-risk and monotone mean-variance. Our method consists of focusing on the convex dual representation, which suggests an expression of the risk measure as the value of a stochastic control problem on an extended the state space. With this we can obtain a dynamic programming principle and use stochastic control techniques, along with the theory of viscosity solutions, which we must adapt to cover the present singular situation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.