Abstract
AbstractNeumann’s classical integral equation with the double layer potential operator is considered on different spaces of boundary charges, such as continuous data, L2(Γ) and energy trace spaces. Corresponding known results for different classes of boundaries are collected and discussed in view of their consequences for collocation or Galerkin boundary element methods.Mathematics Subject Classification (2000)31A1045B0545A05KeywordsC. Neumann’s methodscontractivityessential norm
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.