Abstract

The main goal of this paper is to study the feasibility of a novel implantable micro-system able to record information about tendon sliding movements by using contactless measurement devices (magnetic sources and sensors). The system, named "Biomechatronic Position Transducer" (BPT), can be used for the implementation of advanced control strategies in neuroprostheses. After a preliminary analysis based on finite element model simulations, an experimental setup was developed in order to simulate the recording conditions (the sensors fixed to the bones and the magnetic sources placed on the tendons). In order to limit the number of implanted components of the system, a fuzzy Mamdani-like architecture was developed to extract the information from the raw data. The results confirm the possibility of using the presented approach for developing an implantable micro-sensor able to extract kinematic information useful for the control of neuroprostheses. Future works will go in the direction of integrating and testing the sensors and the electronic circuitry (to provide power supply and to record the data) during in vitro and in situ experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.