Abstract
In this paper, we propose a new method for the derivation of a priority vector from an incomplete pairwise comparisons (PC) matrix. We assume that each entry of a PC matrix provided by an expert is also evaluated in terms of the expert's confidence in a particular judgment. Then, from corresponding graph representations of a given PC matrix, all spanning trees are found. For each spanning tree, a unique priority vector is obtained with the weight corresponding to the confidence levels of entries that constitute this tree. At the end, the final priority vector is obtained through an aggregation of priority vectors achieved from all spanning trees. Confidence levels are modeled by real (crisp) numbers and triangular fuzzy numbers. Numerical examples and comparisons with other methods are also provided. Last, but not least, we introduce a new formula for an upper bound of the number of spanning trees, so that a decision maker gains knowledge (in advance) on how computationally demanding the proposed method is for a given PC matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.