Abstract
AbstractAn RTD[5,λ; v] is a decomposition of the complete symmetric directed multigraph, denoted by λK, into regular tournaments of order 5. In this article we show that an RTD[5,λ; v] exists if and only if (v−1)λ ≡ 0 (mod 2) and v(v−1)λ ≡ 0 (mod 10), except for the impossible case (v,λ) = (15,1). Furthermore, we show that for each v ≡ 1,5 (mod 20), v ≠ 5, there exists a B[5,2; v] which is not RT5‐directable. © 1994 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.