Abstract

The effect of SiC addition (5, 17.5, and 30 vol.%) on the high-energy ball-milling (HEBM) behaviour of ZrB 2 is investigated. It was found that the presence of SiC during HEBM did not alter ZrB 2 refinement mechanism of repeated brittle fracture followed by cold-welding, thereby leading to the formation of agglomerates consisting of primary nano-particles. SiC did, however, slow down the kinetics of crystallite size refinement and promoted the formation of finer agglomerates. Both of these phenomena became more pronounced with increasing SiC content in the ZrB 2 + SiC powder mixtures, and they were attributed to the energy dissipation effect of the nanocrystalline SiC particles during HEBM of the ZrB 2 + SiC powder mixture. This study offers the first evidence that the addition of harder materials to softer materials can slow down the refinement of crystallite sizes, and thus provides a new mechanism to control crystallite sizes during HEBM. The simultaneous attainment of nano-particles of ZrB 2 and SiC, reduced agglomerate sizes, and homogeneous SiC dispersion at the nanometre scale may have important implications for the ultra-high-temperature ceramic community, as it simplifies the processing route and is likely to facilitate the sintering of ZrB 2–SiC composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.