Abstract

The crack extension in a large plate subjected to general plane loading is examined theoretically and experimentally. It is found that under skew-symmetric plane loading of brittle materials the “sliding” or the crack extension in its own plane does not take place, instead crack grows in the direction approximately 70 deg from the plane of the crack. This is very nearly the direction perpendicular to the maximum tangential stress at the crack tip, which is 70.5 deg. The hypothesis that the crack will grow in the direction perpendicular to the largest tension at the crack tip seems to be verified also by cracked plates under combined tension and shear. In spite of the fact that “sliding” and “tearing” modes of crack extension do not take place in brittle materials it is shown that one can still talk about critical stress intensity factors in plane shear and transverse bending of plates. It is also shown that, in general plane loading, the fracture criterion in terms of stress intensity factors is an ellipse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.