Abstract

An accurate calculation of the different magnetocaloric-related magnitudes derived from the temperature dependence of the magnetic entropy change in materials exhibiting first-order magnetocaloric effect is imperative to correctly estimate the true potential of a specific material for refrigeration purposes. In this contribution, we present a meticulous study of two different thermal procedures to measure the set of isothermal magnetization curves from which the total field induced magnetic entropy change, ΔST, is calculated using the adequate Maxwell relation. If the accurate determination of ΔST for any temperature is pursued the thermal and magnetic history of the materials must be taken into account, and then, the unidirectional measurement of reversible isothermal magnetization curves after a thermal cycle is required. The analysis was conducted on MnCoGeB0.01 alloy ribbons that show a giant ΔST at the coupled magneto-structural transition, from a ferromagnetic (TiNiSi-type) phase to a paramagnetic (NiIn2-type) one, owing to the concomitant abrupt magnetization change. We suggest that the conclusions reached can be applicable to any other system displaying magnetocaloric effect originated at a first-order phase transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.