Abstract
We present convergence analysis of operator splitting methods applied to the nonlinear Rosenau–Burgers equation. The equation is first splitted into an unbounded linear part and a bounded nonlinear part and then operator splitting methods of Lie‐Trotter and Strang type are applied to the equation. The local error bounds are obtained by using an approach based on the differential theory of operators in Banach space and error terms of one and two‐dimensional numerical quadratures via Lie commutator bounds. The global error estimates are obtained via a Lady Windermere's fan argument. Lastly, a numerical example is studied to confirm the expected convergence order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.