Abstract

We study the convergence of iterative linear solvers for discontinuous Galerkin discretizations of systems of hyperbolic conservation laws with polygonal mesh elements compared with that of traditional triangular elements. We solve the semi-discrete system of equations by means of an implicit time discretization method, using iterative solvers such as the block Jacobi method and GMRES. We perform a von Neumann analysis to analytically study the convergence of the block Jacobi method for the two-dimensional advection equation on four classes of regular meshes: hexagonal, square, equilateral-triangular, and right-triangular. We find that hexagonal and square meshes give rise to smaller eigenvalues, and thus result in faster convergence of Jacobi's method. We perform numerical experiments with variable velocity fields, irregular, unstructured meshes, and the Euler equations of gas dynamics to confirm and extend these results. We additionally study the effect of polygonal meshes on the performance of block ILU(0) and Jacobi preconditioners for the GMRES method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.