Abstract
In this article we use the concept of multivariate phase-type distributions to define a class of bivariate exponential distributions. This class has the following three appealing properties. Firstly, we may construct a pair of exponentially distributed random variables with any feasible correlation coefficient (also negative). Secondly, the class satisfies that any linear combination (projection) of the marginal random variables is a phase-type distribution. The latter property is partially important for the development of hypothesis testing in linear models. Finally, it is easy to simulate the exponential random vectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.