Abstract

The elastic–viscoplastic behavior of catalyst coated membranes (CCMs) used in polymer electrolyte membrane fuel cells is investigated in this work. Experimental results reveal significant differences between the mechanical properties of a pure perfluorosulfonic acid ionomer membrane and the corresponding CCM under uniaxial tension and cyclic loading. An elastic–viscoplastic constitutive model that is capable of capturing the time dependent response of the CCM at different humidity and temperature conditions is developed and validated against ex-situ experimental results. The validated model is then utilized to simulate the in-situ mechanical response of the CCM when treated as a composite object bonded through the ionomer phase. When compared to a conventional membrane model, the CCM model predicts considerably lower maximum stress and higher plastic strain under typical fuel cell operating conditions and improved plastic strain recovery during hygrothermal unloading. These results reflect the weaker nature of the CCM material which yields at a lower stress than the membrane and may lead to elevated plastic deformation when exposed to hygrothermal cycles in a constrained fuel cell environment. Hence, coupled CCM implementation is generally recommended for finite element modeling of fuel cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.